Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Lett ; 26(16): 3349-3354, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38607994

RESUMEN

UbiA-type prenyltransferases (PTases) are significant enzymes that lead to structurally diverse meroterpenoids. Herein, we report the identification and characterization of an undescribed UbiA-type PTase, FtaB, that is responsible for the farnesylation of indole-containing diketopiperazines (DKPs) through genome mining. Heterologous expression of the fta gene cluster and non-native pathways result in the production of a series of new C2-farnesylated DKPs. This study broadens the reaction scope of UbiA-type PTases and expands the chemical diversity of meroterpenoids.


Asunto(s)
Dicetopiperazinas , Dimetilaliltranstransferasa , Prenilación , Dimetilaliltranstransferasa/metabolismo , Dimetilaliltranstransferasa/química , Dimetilaliltranstransferasa/genética , Dicetopiperazinas/química , Dicetopiperazinas/metabolismo , Estructura Molecular , Familia de Multigenes
2.
Adv Sci (Weinh) ; : e2310018, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687842

RESUMEN

Dimeric indole-containing diketopiperazines (di-DKPs) are a diverse group of natural products produced through cytochrome P450-catalyzed C-C or C-N coupling reactions. The regio- and stereoselectivity of these reactions plays a significant role in the structural diversity of di-DKPs. Despite their pivotal role, the mechanisms governing the selectivity in fungi are not fully understood. Employing bioinformatics analysis and heterologous expression experiments, five undescribed P450 enzymes (AmiP450, AcrP450, AtP450, AcP450, and AtuP450) responsible for the regio- and stereoselective dimerization of diketopiperazines (DKPs) in fungi are identified. The function of these P450s is consistent with phylogenetic analysis, highlighting their dominant role in controlling the dimerization modes. Combinatorial biosynthesis-based pathway reconstitution of non-native gene clusters expands the chemical space of fungal di-DKPs and reveals that the regioselectivity is influenced by the substrate. Furthermore, multiple sequence alignment and molecular docking of these enzymes demonstrate a C-terminal variable region near the substrate tunnel entrance in AtuP450 that is crucial for its regioselectivity. These findings not only reveal the secret of fungal di-DKPs diversity but also deepen understanding of the mechanisms and catalytic specificity involved in P450-catalyzed dimerization reactions.

3.
J Nat Prod ; 87(4): 1222-1229, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38447096

RESUMEN

Utilizing a gene evolution-oriented approach for gene cluster mining, a cryptic cytochalasin-like gene cluster (sla) in Antarctic-derived Simplicillium lamelliciola HDN13430 was identified. Compared with the canonical cytochalasin biosynthetic gene clusters (BGCs), the sla gene cluster lacks the key α,ß-hydrolase gene. Heterologous expression of the sla gene cluster led to the discovery of a new compound, slamysin (1), characterized by an N-acylated amino acid structure and demonstrating weak anti-Bacillus cereus activity. These findings underscore the potential of genetic evolution in uncovering novel compounds and indicating specific adaptive evolution within specialized habitats.


Asunto(s)
Citocalasinas , Familia de Multigenes , Citocalasinas/química , Citocalasinas/farmacología , Estructura Molecular , Policétidos/química , Policétidos/farmacología , Regiones Antárticas , Bacillus cereus , Evolución Molecular
5.
Metab Eng ; 82: 147-156, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38382797

RESUMEN

Cyclo-diphenylalanine (cFF) is a symmetrical aromatic diketopiperazine (DKP) found wide-spread in microbes, plants, and resulting food products. As different bioactivities continue being discovered and relevant food and pharmaceutical applications gradually emerge for cFF, there is a growing need for establishing convenient and efficient methods to access this type of compound. Here, we present a robust cFF production system which entailed stepwise engineering of the filamentous fungal strain Aspergillus nidulans A1145 as a heterologous expression host. We first established a preliminary cFF producing strain by introducing the heterologous nonribosomal peptide synthetase (NRPS) gene penP1 to A. nidulans A1145. Key metabolic pathways involving shikimate and aromatic amino acid biosynthetic support were then engineered through a combination of gene deletions of competitive pathway steps, over-expressing feedback-insensitive enzymes in phenylalanine biosynthesis, and introducing a phosphoketolase-based pathway, which diverted glycolytic flux toward the formation of erythrose 4-phosphate (E4P). Through the stepwise engineering of A. nidulans A1145 outlined above, involving both heterologous pathway addition and native pathway metabolic engineering, we were able to produce cFF with titers reaching 611 mg/L in shake flask culture and 2.5 g/L in bench-scale fed-batch bioreactor culture. Our study establishes a production platform for cFF biosynthesis and successfully demonstrates engineering of phenylalanine derived diketopiperazines in a filamentous fungal host.

6.
Mar Drugs ; 21(12)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38132949

RESUMEN

Heterologous biosynthesis has become an effective means to activate fungal silent biosynthetic gene clusters (BGCs) and efficiently utilize fungal genetic resources. Herein, thirteen labdane diterpene derivatives, including five undescribed ones named talarobicins A-E (3-7), were discovered via heterologous expression of a silent BGC (labd) in Aspergillus nidulans. Their structures with absolute configurations were elucidated using extensive MS and NMR spectroscopic methods, as well as electronic circular dichroism (ECD) calculations. These labdanes belong to four skeleton types, and talarobicin B (4) is the first 3,18-dinor-2,3:4,18-diseco-labdane diterpene with the cleavage of the C2-C3 bond in ring A and the decarboxylation at C-3 and C-18. Talarobicin B (4) represents the key intermediate in the biosynthesis of penioxalicin and compound 13. The combinatorial heterologous expression and feeding experiments revealed that the cytochrome P450 enzymes LabdC, LabdE, and LabdF were responsible for catalyzing various chemical reactions, such as oxidation, decarboxylation, and methylation. All of the compounds are noncytotoxic, and compounds 2 and 8 displayed inhibitory effects against methicillin-resistant coagulase-negative staphylococci (MRCNS) and Bacillus cereus.


Asunto(s)
Aspergillus nidulans , Diterpenos , Talaromyces , Talaromyces/metabolismo , Diterpenos/química , Sistema Enzimático del Citocromo P-450 , Espectroscopía de Resonancia Magnética , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Estructura Molecular
7.
Mar Drugs ; 21(9)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37755103

RESUMEN

Coumarins, isocoumarins and their derivatives are polyketides abundant in fungal metabolites. Although they were first discovered over 50 years ago, the biosynthetic process is still not entirely understood. Herein, we report the activation of a silent nonreducing polyketide synthase that encodes a C7-methylated isocoumarin, similanpyrone B (1), in a marine-derived fungus Simplicillium lamellicola HDN13-430 by heterologous expression. Feeding studies revealed the host enzymes can change 1 into its hydroxylated derivatives pestapyrone A (2). Compounds 1 and 2 showed moderate radical scavenging activities with ED50 values of 67.4 µM and 104.2 µM. Our discovery fills the gap in the enzymatic elucidation of naturally occurring C7-methylated isocoumarin derivatives.


Asunto(s)
Hypocreales , Isocumarinas , Sintasas Poliquetidas , Cumarinas/farmacología
8.
Org Lett ; 24(10): 2025-2029, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35261248

RESUMEN

Prenyltransferases play important roles in the diversification of natural products and the improvement of biological activities. A UbiA-type prenyltransferase CdnC with substrate promiscuity was identified as the pivotal builder of the noncanonical chrodrimanin skeletons, which carry a benzo-cyclohexanone structure as the nonterpene part. In vitro and heterologous expression studies with CdnC led to the production of a series of novel chrodrimanin-like structures. The discovery of CdnC offers a referable strategy for the biosynthesis and structural diversification of farnesyl-derived meroterpenoids.


Asunto(s)
Productos Biológicos , Dimetilaliltranstransferasa , Dimetilaliltranstransferasa/metabolismo
9.
Nat Commun ; 13(1): 225, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017571

RESUMEN

Cytochalasans (CYTs), as well as their polycyclic (pcCYTs) and polymerized (meCYTs) derivatives, constitute one of the largest families of fungal polyketide-nonribosomal peptide (PK-NRP) hybrid natural products. However, the mechanism of chemical conversion from mono-CYTs (moCYTs) to both pcCYTs and meCYTs remains unknown. Here, we show the first successful example of the reconstitution of the CYT core backbone as well as the whole pathway in a heterologous host. Importantly, we also describe the berberine bridge enzyme (BBE)-like oxidase AspoA, which uses Glu538 as a general acid biocatalyst to catalyse an unusual protonation-driven double bond isomerization reaction and acts as a switch to alter the native (for moCYTs) and nonenzymatic (for pcCYTs and meCYTs) pathways to synthesize aspochalasin family compounds. Our results present an unprecedented function of BBE-like enzymes and highly suggest that the isolated pcCYTs and meCYTs are most likely artificially derived products.


Asunto(s)
Citocalasinas/biosíntesis , Citocalasinas/química , Oxidorreductasas N-Desmetilantes/química , Oxidorreductasas N-Desmetilantes/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Productos Biológicos , Catálisis , Proteínas Fúngicas/metabolismo , Isomerismo , Simulación del Acoplamiento Molecular , Oxidorreductasas N-Desmetilantes/genética , Policétidos/metabolismo , Sordariales
10.
Curr Opin Biotechnol ; 69: 281-289, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33770560

RESUMEN

Terpenoids, also referred to as isoprenoids, are the largest group of natural compounds which have contributed significantly to the pharmaceutical industry. The challenges in producing bioactive terpenoids from their original host or by organic synthesis methods spurred the endeavors of producing terpenoids in heterologous host. Modern advances utilizing synthetic biology and biological engineering tools have provided a variety of pharmaceutical terpenoids in large-scale and with diversified structures. In this review, we will summarize the progress in production of typical terpenoids skeletons using heterologous expression method assisted by metabolic engineering techniques, with the purpose of enlightening further efforts in developing advanced cell factories for producing terpenoid based pharmaceuticals.


Asunto(s)
Ingeniería Metabólica , Terpenos , Biología Sintética
11.
J Nat Prod ; 84(4): 1226-1231, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33600172

RESUMEN

Assisted by MS/MS-based molecular networking and X-ray diffraction analysis, five new p-terphenyl derivatives, namely, nocarterphenyls D-H (1-5), were obtained and characterized from the cultures of the marine sediment-derived actinomycete Nocardiopsis sp. HDN154086. The skeleton of nocarterphenyl D (1) was defined to possess a rare 2,2'-bithiazole scaffold, naturally occurring for the first time, and nocarterphenyls E-H (2-5) are p-terphenylquinones with unusual thioether linked fatty acid methyl ester substitutions. Compound 1 showed promising activity against multiple bacteria with MIC values ranging from 1.5 to 6.2 µM, and 2 exhibited notable antibacterial activity against MRSA which surpassed the positive control ciprofloxacin.


Asunto(s)
Antibacterianos/farmacología , Nocardiopsis/química , Compuestos de Terfenilo/farmacología , Antibacterianos/aislamiento & purificación , China , Sedimentos Geológicos/microbiología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Océano Pacífico , Compuestos de Terfenilo/aislamiento & purificación
12.
Mar Drugs ; 17(8)2019 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-31357680

RESUMEN

Overexpression of the global regulator LaeA in a marine-derived fungal strain of Penicillium dipodomyis YJ-11 induced obvious morphological changes and metabolic variations. Further chemical investigation of the mutant strain afforded a series of sorbicillinoids including two new ones named 10,11-dihydrobislongiquinolide (1) and 10,11,16,17-tetrahydrobislongiquinolide (2), as well as four known analogues, bislongiquinolide (3), 16,17-dihydrobislongiquinolide (4), sohirnone A (5), and 2',3'-dihydrosorbicillin (6). The results support that the global regulator LaeA is a useful tool in activating silent gene clusters in Penicillium strains to obtain previously undiscovered compounds.


Asunto(s)
Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Productos Biológicos/metabolismo , Hongos/genética , Hongos/metabolismo , Penicillium/genética , Penicillium/metabolismo , Genes Fúngicos/genética , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...